
www.landesbioscience.com	 Epigenetics	 1225

Epigenetics 7:11, 1225–1229; November 2012; © 2012 Landes Bioscience

 Brief Report Brief Report

*Correspondence to: Manel Esteller; Email: mesteller@idibell.cat
Submitted: 10/15/12; Accepted: 10/15/12
http://dx.doi.org/10.4161/epi.22561

Introduction

Female BRCA1 and BRCA2 mutation carriers have a significantly 
higher lifetime risk of breast and ovarian cancer.1 BRCA1 and 
BRCA2 proteins play major roles in DNA double-strand-break 
repair through homologous recombination,2 so their deficiencies 
can impair the capacity of cancer cells to repair DNA cross-links 
caused by chemotherapy drugs such as platinum-derivatives.3-7 
Ovarian cancer accounts for more deaths than any other tumor of 
the female reproductive system, so there is great interest in identi-
fying biomarkers for therapy prediction. Two independent stud-
ies reported significantly greater primary chemotherapy sensitivity 
to platinum-based chemotherapy agents in patients with ovarian 
cancer who were carriers of BRCA1 and BRCA2 germline muta-
tions.5,6 In addition, tumors from carriers of BRCA1/BRCA2 germ-
line mutations are also sensitive to poly (ADP-ribose) polymerase 
inhibitors (PARPis) that target the base excision repair pathway.8-12 
However, only a minority of breast and ovarian cancer patients 
are BRCA1 and BRCA2 mutation carriers, so the benefit of these 
findings might be confined to a small subset of cases. In addition, 
there might be a link between BRCA1/BRCA2 defects, platinum 
sensitivity and response to PARPis in breast and ovarian tumors 
that is becoming an issue of growing interest.8-12 Herein, we have 
approached this matter from a different angle.

Germline mutations in the BRCA1 or BRCA2 genes are associated with an increased risk of breast and ovarian cancer 
development. Both genes are involved in DNA repair, and tumors harboring genetic defects in them are thought to be 
more sensitive to DNA-damaging agents used in chemotherapy. However, as only a minority of breast and ovarian cancer 
patients carry BRCA1 or BRCA2 mutations, few patients are likely to benefit from these pharmacogenetic biomarkers. 
Herein, we show that, in cancer cell lines and xenografted tumors, BRCA1 CpG island promoter hypermethylation-
associated silencing also predicts enhanced sensitivity to platinum-derived drugs to the same extent as BRCA1 mutations. 
Most importantly, BRCA1 hypermethylation proves to be a predictor of longer time to relapse and improved overall 
survival in ovarian cancer patients undergoing chemotherapy with cisplatin.
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In the search for new potential biomarkers of sensitivity 
differences of human cancer to chemotherapeutic agents, the 
existence of aberrations in the DNA methylation patterns of 
cancer cells is turning out to be the most important, particu-
larly those involving hypermethylation of the sequences called 
CpG islands, which are located in the promoter regions of 
tumor suppressor genes.13 One of the most successful discover-
ies in this area, made by our group14 and others,15 and subse-
quently validated worldwide,16 is that hypermethylation of the 
DNA repair enzyme MGMT is associated with a good response 
to nitrosurea alkylating agents in glioma. For BRCA1, there 
is clear evidence that the BRCA1 gene can also undergo epi-
genetic inactivation in sporadic breast tumors17-22 and ovarian 
tumors20,23-25 by the gain of DNA methylation in its promoter-
associated CpG island. That this aberration produces a tumor 
with a BRCA1 phenotype was further demonstrated by showing 
that it gives rise to the same pattern of gene expression as seen 
in inherited BRCA1 mutations.26 Strikingly, we and others have 
recently found that BRCA1 CpG island hypermethylation also 
predicts sensitivity to PARPis.27,28

We examined whether the enhanced platinum-based sensitiv-
ity observed in BRCA1/BRCA2 familial tumors is also present in 
sporadic BRCA1 hypermethylated tumors.
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between this epigenetic aberration and the putative transcrip-
tional inactivation of the BRCA1 gene at the RNA and protein 
levels. The cancer cell lines UACC3199 and HCC-38 hypermeth-
ylated at the BRCA1 CpG island had minimal expression of the 
BRCA1 RNA transcript, as determined by quantitative RT-PCR  
(Fig. 1), and BRCA1 protein, as determined by western blot 
(Anti-BRCA1 Ab-1, Calbiotech, Clone# MS110) (Fig. 1). The 
BRCA1 mutant breast cancer cell line MDA-MB-436 cell, which 
carries a genetic deletion, was used as a control for the lack of 
expression of the BRCA1 transcript and protein (Fig. 1). In con-
trast, the BRCA1 unmethylated and non-mutant MDA-MB-231 
cell line expressed the BRCA1 transcript and protein (Fig. 1).

An increasing number of reports suggest that tumors with 
genetic defects in BRCA1 are more sensitive to growth inhibition 
and chromosomal damage upon platinum-based chemotherapy. 
This makes it extremely interesting to know, for clinical trans-
lational purposes, whether cancer cells with BRCA1 methyla-
tion-associated silencing also possess these functional features. 
First, we studied the antiproliferation effects of cisplatin and 

Results and Discussion

BRCA1 and BRCA2 are candidate genes for hypermethylation-
associated inactivation in human cancer because a 5'-CpG island 
is located around the corresponding transcription start sites. To 
analyze the methylation status of the promoter-associated CpG 
islands, we screened 15 human cancer cell lines from breast (HCC-
1143, MDA-MB-468, MDA-MB-468-PT, MDA-MB-468LN, 
MCF7, SK-BR-3, T47D, Hs578T, UACC3199, MDA-MB-231 and 
MDA-MB-436) and ovarian (SK-OV-3, IGR-OV1, OVCAR-3 
and OVCAR-5) tumor types, using bisulfite genomic sequencing, 
methylation-specific PCR and pyrosequencing. BRCA2 promoter 
CpG island methylation was not found in any of the cases, but the 
breast cancer cell lines UACC3199 and HCC-38 exhibited BRCA1 
CpG island promoter hypermethylation (Fig. 1). All normal breast 
tissues analyzed were completely unmethylated at the BRCA1 pro-
moter CpG island (Fig. 1).

Having noted BRCA1 promoter hypermethylation in the 
aforementioned cancer cell lines, we assessed the association 

Figure 1. BRCA1 promoter CpG island hypermethylation is associated with transcriptional silencing. (A) Pyrosequencing analysis of BRCA1 CpG island 
demonstrates hypermethylation in UACC-3199 and HCC-38 cancer cells. (B) Bisulfite genomic sequencing of eight individual clones in the BRCA1 pro-
moter CpG island: examples of a normal breast and the breast cancer cell line HCC-38 are shown. Presence of a methylated or unmethylated cytosine 
is indicated by a black or white square, respectively. Black arrows indicate the position of the bisulfite genomic sequencing primers. (C) Real-time PCR 
expression of the BRCA1 transcript. (D) BRCA1 expression was also determined by western blot and the β-actin protein was used as a loading control. 
The UACC3199 and HCC-38 breast cancer cells show a hypermethylated CpG island in association with the downregulation of the BRCA1 protein. MDA-
MB-231 (wild-type) and MDA-MB-436 (mutant) are shown as positive and negative controls for BRCA1 expression.
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BRCA1 epigenetic status using UACC3199 (BRCA1 hypermeth-
ylated) and MDA-MB-231 (BRCA1 unmethylated) cancer cells 
xenografted in nude mice. Upon subcutaneous administration 
of cisplatin, significant tumor growth inhibition over time was 
observed in the BRCA1 hypermethylated xenografts (p = 0.025), 
but not in unmethylated cells (p = 0.443). The mice were sacri-
ficed 30 d after the start of the treatment and the tumor size of 
the xenograft was measured. BRCA1 hypermethylated cells had 
significantly smaller tumors than the xenografted unmethylated 
cells (p = 0.033) (Fig. 2).

Given the aforementioned in vitro and in vivo findings that 
human cancer cells with BRCA1-methylation-associated silenc-
ing are very sensitive to platin derivatives, we wondered whether 
the same could be observed in clinical samples. In the clinical 
context, cisplatin is a chemotherapy drug widely used in the treat-
ment of ovarian cancer, a tumor type in which a significant rate 
of BRCA1 CpG island hypermethylation has been described.17-22 
We therefore assessed whether the presence of BRCA1 promoter 
CpG island hypermethylation, detected by pyrosequencing, was 
a predictive marker of response to cisplatin in ovarian cancer 

carboplatin in the four described cancer cell lines with different 
BRCA1 genetic/epigenetic status using the 3-(4,5-dimethylthia-
zol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. BRCA1 
hypermethylation (UACC3199 and HCC-38 cells) conferred the 
same degree of sensitivity to the two platin compounds as did 
the BRCA1 mutation (Fig. 2), while the unmethylated and non-
mutated cell line (MDA-MB-231) was significantly more resis-
tant (Fig. 2). Related to the formation of double-strand breaks in 
the DNA upon the use of the platin-derivatives, BRCA1-deficient 
cells (hypermethylated or mutated) experienced equally mas-
sive DNA damage, as assessed by the comet assay, when treated 
with cisplatin or carboplatin (Fig. 2). This was not observed 
in BRCA1-proficient cells (Fig. 2). It is interesting to note that 
BRCA1 unmethylated and non-mutated cells express increasing 
amounts of BRCA1 when platin is used, enabling the effective 
repair of induced DNA lesions, but BRCA1 hypermethylated 
cells are unable to experience this reactive change (Fig. 2).

We transferred our experiments from the in vitro assays 
described above to an in vivo setting in a mouse model. The 
antitumor activity of cisplatin was evaluated with respect to 

Figure 2. BRCA1 epigenetic inactivation predicts sensitivity to platinum-based chemotherapy. (A) Cell viability assessed by the MTT assays demon-
strates that methylated (UACC3199 and HCC-38) and mutant (MDA-MB-436) BRCA1 cells both exhibit enhanced sensitivity to cisplatin and carbopla-
tin in comparison with wild type and unmethylated MDA-MB-231 breast cancer cells. The corresponding IC50 values are shown. (B) Representative 
comet assays show DNA damage upon cisplatin use in the BRCA1 methylated or mutated cell lines. (C) Quantification of the obtained values from the 
comet assay. BRCA1-hypermethylated cells are not able to repair DNA damage when cisplatin is used. The values of comet assays shown in box-plots 
demonstrate that both methylated and mutant BRCA1 cells experience permanent DNA damage when cisplatin is used that it is not observed in BRCA1 
wild type or unmethylated cells (MDA-MB-231). (D) Relative changes in tumor size of UACC3199 (BRCA1 hypermethylated) and MDA-MB-231 (BRCA1 
unmethylated) cancer cells xenografted in nude mice upon cisplatin use. Values shown at 28 d after the start of the chemotherapy treatment.
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inherited genetic defects in BRCA1/BRCA2 render these neo-
plasms more sensitive to platinum-based regimens. Herein, using 
the BRCA1 epigenetic defect, we have broadened these observa-
tions to include sporadic tumors, which make up the vast major-
ity of cases attended by medical practitioners. Our results support 
the inclusion of BRCA1 promoter CpG island hypermethylation 
in biomarker panels assessing the clinical efficacy of platinum-
based chemotherapy.
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patients treated with this drug. The study of a well characterized 
clinical cohort of serous epithelial ovarian tumors [FIGO stages: 
I (n = 7), II (n = 3), III (n = 18) and IV (n = 2)], all of which 
were treated with cisplatin, showed that BRCA1 methylation was 
observed in 13% (4 of 30) of the cases. The BRCA1 hypermeth-
ylated ovarian tumors corresponded to FIGO stages I (n = 2) 
and II (n = 2). Most importantly, BRCA1 epigenetic inactivation 
was associated with a significantly longer time to relapse (Cox 
regression, log-rank, p = 6.40E-007) and improved overall sur-
vival (Cox regression, log-rank, p = 0.009) (Fig. 3). Thus, the 
clinical data resemble the aforementioned cell culture and xeno-
graft results that suggest an increased chemosensitivity of BRCA1 
hypermethylated tumors to platinum-derived drugs.

One of the “holy grails” of current medical oncology is person-
alized cancer treatment. The oncologist would like to have infor-
mation available that pinpoints a particular molecular Achilles’ 
heel in a given patient that indicates the usefulness of a particular 
drug. To date, this approach has been most successful for treating 
hematological malignancies, but progress with solid tumors, such 
as breast, colon and lung tumors has also been made. A num-
ber of studies in ovarian tumors5,6 support the hypothesis that 

Figure 3. BRCA1 hypermethylation proves to be a predictor of good response to chemotherapy with cisplatin in ovarian cancer patients. (A) BRCA1 
hypermethylation in patients with ovarian cancer is associated with longer time to relapse. (B) BRCA1 hypermethylation in patients with ovarian cancer 
is associated with improved disease-specific survival.
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